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structure is poor, then at 2.5 A electron density maps 
based on calculated phases alone retain a tendency to 
show spurious positive electron density around in- 
correctly located atoms, thus hampering the solution of 
the structure. However, the use of the procedure of 
phase combination to improve electron density maps 
has been convincingly demonstrated to have great 
potential in the field of protein structure determination. 
The iterative use of the combined phase information is 
capable of producing very high quality electron density 
maps far surpassing those obtained by isomorphous 
replacement alone. 

The author wishes to thank Dr Mitchell Lewis for 
introducing the phase combination program into the 
laboratory and for discussions on the bias checks and 
weighting schemes. His thanks are also due to 
Professor Sir David Phillips for invaluable discussions 
during the preparation of the manuscript, and to the 
Medical Research Council for the provision of a project 
grant to fund the work on PGK. 
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Abstract 

All complete pattern shift lattice (DSC-lattice) trans- 
lations of one lattice with respect to the second lattice 
of a bicrystal are described as a group. It is shown 

*Also at Bergman School for Applied Science, Hebrew 
University of Jerusalem, Israel. 

that the matrix representation of this group can be used 
to solve topological problems connected with secondary 
grain boundary dislocations (SGBD's) such as finding 
the step in the boundary associated with the SGBD. 
We have formulated this problem by establishing the 
'step vector' S associated with the Burgers vector b 
of the SGBD in a cubic bicrystal. The problem is then 
solved in 2D, and the way to generalize to 3D is 
indicated. 
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1. Introduction 

It is now well established that secondary grain 
boundary dislocations (SGBD's) can exist in many 
high-angle grain boundaries. There is considerable 
evidence that such SGBD's  are of importance in the 
understanding of intrinsic grain boundary structure and 
energy (Balluffi, 1979) and that they also play essential 
roles in a number of grain boundary kinetic phe- 
nomena. For example, regular arrays of intrinsic 
SGBD's  generally form in boundaries possessing 
misorientations which differ from special misorienta- 
tions corresponding to a relatively high degree of 
coincidence between the two crystals adjoining the 
boundary.  The role of the SGBD's  in such cases is to 
produce a 'fit-misfit '  type of grain boundary structure 
consisting of the SGBD's  embedded in the low-energy 
interface corresponding to the nearby high-coincidence 
misorientation. In the kinetic phenomena, SGBD's  
have been used as the basis for the action of grain 
boundaries as sources/sinks for point defects (Balluffi, 
1980) and as the basis for grain boundary migration 
and sliding (Crussard & Tamhankar ,  1958; Smith & 
Rae, 1979). Also, a model of 'diffusion-induced grain 
boundary migration' has been proposed by Balluffi & 
Cahn (1981) which is based on the climb of SGBD's.  

In view of this, a strong interest (King & Smith, 
1980) has developed with respect to the topology of 
SGBD's.  It is well recognized that steps in the 
boundary are generally associated with SGBD's,  and 
since all of the above kinetic models are involved with 
these steps there is special interest in their topology. A 
basic question related to this is the possible step heights 
which are associated with a given SGBD possessing a 
definite Burgers vector. The analytical solution of this 
problem has not yet been obtained although it has been 
discussed in the literature (King & Smith, 1980; Pond, 
1977). In the present paper, we analyze the atomic 
structure of a bicrystal and obtain a solution of this 
problem with a convenient algebraic group based on 
DSC-lattice translations. 

2. The DSC-lattice frame and the construction of the 
grain boundary step 

From the definition of the DSC lattice,* it has been 
shown that a perfect SGBD possesses a Burgers vector 
which is a DSC-lattice vector. Therefore, we perform 
our analysis in the DSC-lattice framework. Mathem- 
atically, this framework, as will be shown, is con- 
venient because lattice points of crystals 1 and 2 (of the 
bicrystal t)  can be represented as the Congruent class 

* All displacements of lattice 2 (of the bicrystal) with respect to 
lattice 1 which cause a pattern shift which is complete. 

The term 'lattice of crystal 1 (2)' refers to the mathematically 
infinite set of points which describes one of the two lattices of the 
bicrystal. 'Bilattice' means the union set of the lattice of crystal 1 
set and the lattice of crystal 2 set. 

modulo 2;. Conventionally, Z' is the volume of the 
repeating unit in atomic volume units (i.e. the volume of 
the coincidence site lattice (CSL) cell). Following 
Balluffi (1980), Fig. 1 shows how to form an SGBD 
and its associated step in a simple Z =  5 (36.9 °) 
symmetric tilt boundary.  We start with a perfect 
bicrystal (Fig. la), make a cut along the boundary 
(Fig. 1 b), and then translate one crystal with respect to 
the other by a DSC-lattice vector (Fig. lc) forming an - 
SGBD. In Fig. l(c), both the SGBD with its specified 
DSC-lattice Burgers vector and its accompanying step 
can be readily identified in the DSC-lattice frame. One 
way to characterize the step is to define the smallest 
vector S which goes from a lattice 1 point on the right 
side of the step to the nearest lattice 1 point with the 
same environment on the left side of the step (see Fig. 
lc). The corresponding step in lattice 2 can be obtained 
by adding the Burgers vector to S. The projection of 
this vector on a normal to the boundary plane (n in Fig. 
l c) is defined to be the step height. We can now 
represent S in a standard reference lattice which we take 
to be a cell of the CSL and draw S from a CSL point to 

D S C  L A T T I C E  
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?* 

(c) 

(d) I 
" 

V ,, 

Fig. 1. Construction of the SGBD: starting from the perfect 
symmetric [210] tilt boundary (a), producing a gap d which is a 
lattice vector of the DSC lattice (b), and then closing the gap to 
get an edge SGBD with Burgers vector d and a step vector S (c). 
S goes from the coincidence site before the translation to a 
coincidence site after the translation (d). 
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the appropriate DSC-lattice point within the cell as in 
Fig. l(d). This procedure has been used by other 
authors (King & Smith, 1980). The question now is 
what value of S is associated with a DSC translation b? 

All of the above considerations are purely geo- 
metrical, assuming two rigid lattices (no relaxation) and 
based on the set of all translations (Burgers vectors) of 
one crystal with respect to the other under which the 
boundary structure remains unchanged. We shall now 
show that this set of ' invariant translations' forms a 
group which can be represented in a matrix form. 

3. The bicrystal and translations group representation 

3.1. Representation of  the lattice points in the DSC- 
lattice frame in two dimensions 

To begin, we consider a 2D single CSL cell, divided 
into X equally spaced rows and columns parallel to the 
cell edges to form the DSC lattice, and take the 
coincidence site to be the origin. In each row/column 
there is exactly one lattice site of each crystal of the two 
crystals forming the bicrystal. Therefore, it is possible 
to define the lattice-point positions of one of the two 
crystals, say lattice 1, within the CSL cell as a set a of 
27 elements ('lattice 1 set'): 

a ~, / , ,1  ~.z-x  
l t ~ m l m =  0 

where a~ is the number of the column (counting from 
the origin) that the atom occupies in the mth row. The 
lattice 1 set of the 27 = 13 boundary,  which runs along 
the (3, 2) direction (internal lattice 1 coordinates), in 
this form is 

(0 ,8 ,3 ,  11,6, 1 ,9 ,4 ,  12 ,7 ,2 ,  10, 5) 

(see contents of square CSL cell at lower left of Fig. 2). 
The set cd can be constructed in the manner 

illustrated graphically in Fig. 2. Instead of taking the 
conventional square CSL cell we construct a linear 
coincidence cell which consists of 27 lattice points 
distributed along a line between two coincidence sites. 

. . . . . . . . . . . .  ' ~ ,  ~ ~ - ~ -  - , . . . .  _ 

• , i . . ~ . . . .  ~ . +  .- : - + - ! - 4 -  ~ - , - t  .... ~.' ' J - -  
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Fig. 2. Construction of conventional CSL from the linear CSL for 
a 27 = 1 3 (r = 3, s --- 2) boundary. 

If (r, s) are the integers which generate the CSL so 
that 

27 = r 2 + S 2 (r 2 + s 2 = odd) 

(Bollmann, 1970), the linear CSL chain runs along the 
(r, s) direction in the DSC-lattice internal coordinate 
system as seen in Fig. 2. On this linear chain a lattice 1 
point is found every r columns or s rows of the 
DSC-lattice frame. This chain can be 'reduced' into the 
conventional square CSL cell by the graphical pro- 
cedure illustrated in Fig. 2. It may be seen that the 
translation of each lattice 1 point consists of an integral 
number of 27 DSC-lattice rows and columns. Mathe- 
matically, this operation can be represented by the 
modulo 27 congruence class. Let m be the row number 
(counting from the origin) and n an integer less than 27. 
If 

m = ns(mod 27), ( la )  

then the lattice 1 set mth element is 

a. ml = nr(mod 27), ( lb) 

while the lattice 2 set (we imagine two penetrating 
lattices) is 

am2 _ - n r ( m o d  Z). ( lc)  

Having obtained the frame with the two lattice sets, we 
introduce SGBD's  with DSC-lattice Burgers vector 
b =  (p,q) (q,p integers in units of the DSC-lattice 
frame) by adding p to each member of the set and 
cyclically shifting each element by q places to the right 
in the set. The new set, after these operations, will be 
defined for 

m = (n + q)(mod 27) 

a s  

am = (an + p)(mod Z'). (2) 

3.2. Rotation and translation in the DSC-lattice frame 

So far, we have described the geometry of the two 
lattices in the DSC-lattice frame, and have introduced 
the translation in this frame. Because both rotation and 
translation are represented here in terms of a per- 
mutation of the (0, 1, ..., 2 7 -  1), two sets of operators 
above the 27! order permutation group are of interest: 

(a) The set of permutation operators which is 
associated with all allowed (r,s) rotations, namely, Zr~s. 
These operators act on the (0, 1, 2, ..., 2 7 -  1) element 
of the group (the identity element) according to ( la )  
and (lb), thus giving the permutation of the lattice 1 
set. We designate as (~s)  t the operation that gives the 
second lattice set (equation 1 c). 

(b) The set of permutation operators which is 
associated with all translations (p,q), i.e. Burgers 
vectors, is designated SpZ.q and acts according to (2). 

In this manner the group of operators {sx}, for all 
possible (r,s) and (p,q), forms an operator space above 
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the 27! order permutation group. Working in this space 
rather than in the regular geometrical rotation/trans- 
lation space has the advantage that the operators 
contain implicitly the information about the location of 
lattice points. 

3.3. T h e  ro ta t ion  r e p r e s e n t a t i o n  

One convenient way to handle the two sets is to look 
at the matrix representation of them; we construct the 
27 × 27 matrix of~.~ from (la):  

(XEr, s)l.J = (~l-l.nr(mod2;) ~ J -  1,ns(mod~;)" (Vn). (3) 

In this way, the matrix element ( i , j )  is equal to unity if 
the associated (column, row) of the DSC-lattice frame 
is occupied by a lattice 1 point, and zero otherwise (see 
footnote in § 3.4). In the same manner, the transposed 
matrix (Z~,s) t spans the second lattice. For example, we 
take the 27 = 13 case where r = 3, s = 2 (our examples 
are for 27 = 13 in order not to be restricted to the case 
s = 1 which might be misleading because then m = n). 
Then, 

13 
X3,2 = 

~ 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 1 0 0 0 0  

0 0 0 1 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 1 0  

0 0 0 0 0 0 1 0 0 0 0 0 0  

0 1 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 1 0 0 0  

0 0 0 0 1 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 1  

0 0 0 0 0 0 0 1 0 0 0 0 0  

0 0 1 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 1 0 0  

0 0 0 0 0 1 0 0 0 0 0 0 0  

The lattice sets can be obtained 
operations: 

(4) 

by simple matrix 

a I ..13 a =(0 ,8 ,3 ,11 ,6 ,1 ,9 ,4 ,12 ,7 ,2 ,10 ,5 ) ,  (5) A~2,1 t 

= ~ 13 ~t a2 (z2,1J a t = ( 0 , 5 , 1 0 ,  2, 7,12, 4, 9,1'  6 '11 '  3' 8)" (6) 

Here, a t is the column of the 'identity' element of the 
permutation group, (0, 1, 2, 3, . . . ,  12). 

3.4. T h e  t r a n s l a t i o n  g r o u p  r e p r e s e n t a t i o n  

We now construct the matrix Sp.q which is asso- 
ciated with the translation (p,q) by recognizing the way 
in which it shifts the Xr, s matrix element: 

(T~,,q,r,~li, k Y E J,k 
J = l  

(7) = (Xr, s)(l+p) (rood z), (J+ q)(rnod Z)" 

All of the right-hand cyclic permutations Tp, q,r, s a t of 
a g i v e n  (r ,s)  form a subgroup of the permutation group, 
which might be called 'the (r ,s)  lattice translation 
group' because it represents all possible translations of 
lattice 1 with respect to lattice 2 under which the 
bilattice structure is invariant. We are now interested in 
the matrix representation of this group. 

Naturally, we take the non-translated TXo, o,r,s to be 
E X~,s, i.e. So, o = I,  where I is the identity matrix. 

Accordbag to (1), the Sp, q matrix representation can be 
constructed by the (p + qax_l)(mod 27) units to the 
right. The assumption here is that a unit column 
translation induces a z _ 1 unit row translations as shown 
in Fig. 3. This conclusion is derived from the following 
argument. 

We look at the 'lattice 1 set' a 1, and search for the 
number that we have to add to each element of the set 
in order to obtain the same group element as if we had 
cyclically shifted the whole set by one unit to the right. 
Because a I = 0, and after the shifting a' 1 = a~_ 1 (a'l is 
the value of a 1 after the shift), the additive number that 
we are seeking is az_ v We discuss in the Appendix the 
behavior of a z _  1 and show that for small (r ,s)  [r < 9, 
s < 4 except for the couple (4, 3)] 

~--I. a 

~T,_.-U.4_ 2 - 
4-+-k4-q--H-- i-.¢--?- 

(a) 

(x+ ay_l)(mod E) 

(b) 

- -  

- , _ ~  

Fig. 3. Exa'rnple of the relation between column and row 
translation in 2; = 13 (r = 3, s = 2) CSL cell. A translation by 
one DSC-lattice parameter induces a translation of a~_l 
DSC-lattice parameters in the perpendicular direction. 
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r +  1 s) 
az-1 --- 22-  r + (mod 22). (8) 

S 

Other cases of larger (r,s) (which are probably 
irrelevant because of the relatively low degree of 
coincidence) can be solved by number theory methods 
if necessary. 

a z _ ~ being known, the matrix representation for the 
lattice 1 translations group element Sp, q is given by the 
relation* 

(Sp,  q)l, j : 6 i , ( j+p + laz_,)(mod£).  (9) 

For example, 
(1,1) for 22= 13 

0 

0 

0 

0 

0 

0 

S 13 0 1,1 

1 

0 

0 

0 

0 

0 

Then, by (4), 

the matrix representation of (p,q) = 
is 

0 0 0 0 0 1 0 0 0 0 0 0  

0 0 0 0 0 0 1 0 0 0 0 0  

0 0 0 0 0 0 0 1 0 0 0 0  

0 0 0 0 0 0 0 0 1 0 0 0  

0 0 0 0 0 0 0 0 0 1 0 0  

0 0 0 0 0 0 0 0 0 0 1 0  

0 0 0 0 0 0 0 0 0 0 0 1  

0 0 0 0 0 0 0 0 0 0 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

0 1 0 0 0 0 0 0 0 0 0 0  

0 0 1 0 0 0 0 0 0 0 0 0  

0 0 0 1 0 0 0 0 0 0 0 0  

0 0 0 0 1 0 0 0 0 0 0 0  

B 

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 1  

0 0 0  

S 13 ~13 0 0 0 1,1/,,3,2 

1 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 1 0  

* Also, one can similarly 
1)a~_ ~ (mod Z). 

(10) 

0 0 0 0 0 0 1 0 0 0  

0 1 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 1  

0 0 0 0 1 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 1 0 0  

0 0 1 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 1 0 0 0 0  

1 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 1 0  

0 0 0 1 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0  

, ( 1 1 )  

represent X of  (3) by (X~,s)t.j = J i - 1 , - ( j  + 

which gives unity in any row/column whenever a 
translated lattice 1 point occupies a position in the 
DSC-lattice frame according to the previous con- 
vention. 

An analogous subgroup is the one of all left-hand 
cyclic permutations of (~,s) t. Clearly, this subgroup 
represents all invariant translations of lattice 2 with 
respect to lattice 1. This subgroup might be called the 
'(r,s) lattice 2 translations group'. It is possible to 
represent this'group above ~r,s by a simple relation to 
the SpZ, q group: 

z t = S z (12) (Sp ,  q)l,J ( P ,q) (£- t+2)(mod£) , j"  

We define the row elements to be (22- i + 2)(mod 22) 
so that the identity element of the first group will be 
transferred to the element of the second group which 
represents the non-translated group element. For 
example, 13 t (X3, 2) in this representation will be 

m 

1 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 1  

0 0 0 0 0 0 0 0 0 0 0 1 0  

0 0 0 0 0 0 0 0 0 0 1 0 0  

0 0 0 0 0 0 0 0 0 1 0 0 0  

0 0 0 0 0 0 0 0 1 0 0 0 0  
( K'~ 13 t '-'o.o) = 0 0 0 0 0 0 0 1 0 0 0 0 0  . (13) 

0 0 0 0 0 0 1 0 0 0 0 0 0  

0 0 0 0 0 1 0 0 0 0 0 0 0  

0 0 0 0 1 0 0 0 0 0 0 0 0  

0 0 0 1 0 0 0 0 0 0 0 0 0  

0 0 1 0 0 0 0 0 0 0 0 0 0  

0 1 0 0 0 0 0 0 0 0 0 0 0  

Now, the translations group has a convenient rep- 
resentation, and we will demonstrate this advantage by 
an application to the problem of the step vector. 

3.5. Application to the step topology of  the SGBD 

In view of {} 1.1, the vector S is a DSC-lattice vector, 
say (m, n), where re(n) is the DSC-lattice column (row) 
of the coincidence point after the translation. The 
quantity (m, n) can be found by identifying the element 
(m, n) of the two matrixes SX and X t which is equal to 
unity: 

£ t 
£ £ = (Xr.s)m.n 1, (Sp .qXr . s )m.  n = 

o r  

[ (So ,  o) (,~r,s)]m,n 1. ( 1 4 )  (Sp .qXr . s )m.  n : _~_ 

In other words, we need the m for which the non-zero 
element (re,j) of the (p,q) right-hand matrix is equal to 
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the (m,j) left-hand (00) matrix element. The column 
can be obtained, following the definition of the two 
matrixes [(9) and (12)], by equation 

(m + p + q a z_ 1) (mod 27) 

= [27-  (m + p  + qaz_l )  + 2](mod27). (15) 

Because there is only one non-zero term in each 
column/row of both S and X, (m, n) is defined for each 
m by way of (3). We summarize by writing the vector $ 
(in DSC-lattice units) as 

( m ) 
$P'q= m ' (27 -  az_l)(mod 27) ' (16) 

where the two components of the vector are along the 
CSL cell edges, and m' = m - 2 is derived from (15) as 

m' = ½{(p + paz_l)(mod27) 

+ ½[ 1 -- (--1)(P+qaz-0(m°d Z)] 27 }. (17) 

The quantity m' (27-  az_l)(mod 27) is the step height of 
a boundary which runs parallel to a DSC-lattice row in 
Fig l(d). 

In the case of Fig. 1, for example (p = 0,q = 1, 
a z - i  = 3), we have from (17) m' = 4 and, therefore, 
from (16), 

s(:t 
which is the vector that is drawn in Fig. 1 (d). 

4. Discussion 

When an SGBD is introduced in two dimensions, a 
singular point at the boundary is produced between 
two perfect structures. This singularity is associated 
with the dislocation core and the accompanying step. 
The topological properties of these singular structures 
provide a basis for physical properties of the bicrystal 
which cannot be explained by means of regular 
boundary structures, for instance, the kinetic proper- 
ties that were mentioned in the Introduction. However, 
because of their singular character, there are some 
problems in specifying their topology. Mathematically, 
in § 3 we presented the algebraic group which might be 
applied to the description of the bicrystal topology. The 
singularity treatment required a mathematical 'mani- 
pulation' by which we compared the elements of two 
groups: one representing translations of one crystal 
with respect to the second, and the other representing 
translations of the second crystal with respect to the 
first. It should be noted that this operation (of 
comparing elements) is not of any physical signifi- 
cance, and is purely for mathematical convenience. 
This point is emphasized here in order to avoid any 

misunderstandings about the physical significance of 
the present step treatment. 

Finally, we generalize the validity of our solution for 
the topology of SGBD's to three dimensions. It is clear 
that the model for two dimensions still holds for the 
[100] tilt boundary in simple cubic materials. The 
generalization to [100] tilt boundaries in f.c.c, materials 
(the b.c.c, results can be derived in the same way) can 
be done as follows. 

For f.c.c, materials the CSL is b.c.t., where the base 
of the primitive cell is the 2D-CSL structure that has 
already been discussed. Half a lattice parameter (f.c.c. 
lattice coordinates) above the base, the same structure 
appears again but translated by (½, 92D-CSL units. The 
projection of the entire structure on the base plane, 
therefore, produces a framework which is four times as 
dense as the 2D DSC lattice, as seen in Fig. 4. For 
analyzing the [100] tilt boundary step, it is enough to 
know the height of the step in this frame. For this 
reason the discussion of § 3 can be applied, but, instead 
of describing the lattice set as { -n  az_ 1(mod 27) }zn-01, we 
take it to be {-naz_~(mod227)}2z__-o k (We have here 
used az_ 1 for abbreviation; it corresponds to the az-1 
element of the 2D set). From here on we can follow the 
arguments of § 3 and obtain the projection of the step 
vector on the CSL base plane. The third component of 
the step is just the third component of the Burgers 
vector (mod 2). 

i 

I 4 

• LATTICE I, FIRST PLANE 

• LATTICE I, SECOND PLANE 

o LATTICE 2,  FIRST PLANE 

ZX LATTICE 2,  SECOND PLANE 

Fig. 4. The projection of the second plane of the 3D primitive 27 = 
1 3 CSL cell on the first plane for an f.c.c, material. We can apply 
the § 3 formaUsm to this structure by using a 227 x 227 
DSC-lattice frame, because in each column/row there is only one 
lattice point of each crystal of the bicrystal. 
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The same arguments of § 3 hold for any other [hkl] 
rotation axis used to produce the CSL while using the 
expression 2; = r 2 + (h  2 + k 2 + 12)s2 (Ranganathan, 
1966). 

An algebra of the translation group can be con- 
structed by the collection of all the operators: 

A = ~ ap, q~p,q, (18) 

where ap, q is a scalar and Sp, q is defined by 

Sp, qtp(r) = tp(r + b), (19) 

for any physical property tp which is dependent on the 
spatial group of r. We have restricted ourselves to the 
topology of bicrystals in the present paper; therefore, 
we used tp(r) = r, but the discussion can be generalized. 

In § 3.4 it was shown that there are only Z operators 
above the translations group. This may be surprising 
because the DSC-lattice frame contains 2; × 2; possible 
translations. The physical reason for this is that there 
are only 2; coincidence sites which can be produced by 
translations of lattice 1 with respect to lattice 2. For 
this reason we should write (18) as 

A = Y a lS  t. (20) 
1=1 

In the previous section, "~t is the group of all 
DSC-lattice translations in the x direction in one CSL. 
Another convenient set, Sl, is all the translations from 
the origin to the second-lattice points. Because we can 
get any invariant pattern with this algebra, we can use 
the 2; translations of the group S t for describing the 
DSC lattice. This might be important when dealing 
with 3D translations because this group has cubic 
symmetry. 

For each lattice point on the linear chain (mr, ms)  
[DSC-lattice coordinates; see the description of the 
linear CSL in § 3.1], there is a lattice point at (mr + llS, 
ms - 12 r) (11 integer). In our notation the column value 
is the an for row n; therefore, we write for a 1 the two 
equations: 

a I = mr  + llS, 
(A1) 

1 = m s  - -  1 2 r ,  

or, after translating to the square CSL cell, (ll l  2 = 1): 

~h= s r + s  (rood2;). 

The condition that we assumed here, r(r + 1) = 0 
(mod2;), is true for any (r,s) that are smaller than (9,4) 
except (4, 3). 

Another way of finding a z_ 1 (which can be applied 
to the cases of high indices and l 1, l 2 different from 1) is 
by writing the two equations for rows and columns: 

(a) The difference in rows is 1: 

- 1  = ms(mod2;); 

(b) The difference in columns is a:~_ 1: 

a~:_ 1 = mr(mod 2;). 

Squaring and adding both identities (remember r 2 + 
s 2 = 2;) gives the diophantic equation: 

a~_l  = - 1  (mod 2;), 

which can be solved using number theory (Mathews, 
1965). 

5. Summary 

The crystallography of SGBD's  can be presented by a 
group with a simple matrix representation. This gives 
mathematical tools for dealing with the topology of 
SGBD's and predicting the step vector S which is 
associated with their Burgers vectors b. This group can 
also be used for any other physical property of the 
translated bicrystal with the algebra defined by (20). 
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APPENDIX 

A similar problem is finding the value of al ( a z - i  = 
2 ; -  ax). 
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